Show that x^2+6x+11 can be written in as (x+p)^2+q, where p and q are integers to be found.

To start, we need to complete the square of the equation. To do this, we divide the coefficient of x by 2. Here, 6/2=3. We then find (x+3)^2, which gives us the first part of the equation we want to express, but also leaves us with something extra. Expanding out (x+3)^2 gives us x^2+6x+9. Here we have what we were trying to express but with the extra part 9, so we can write (x^2+6x)=(x+3)^2-9.
Substituting this back into our original equation, we have (x+3)^2-9+11, which equals (x+3)^2+2.Therefore, p=3, q=2.

HE
Answered by Hannelore E. Maths tutor

9942 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


Solve the equation: 2x+3y=8 & 3x-y=23


f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


What the integral of e^2x*x? (limits 0,1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning