Find two positive numbers whose sum is 100 and whose product is a maximum.

Call the two numbers x and y. The constraint is that x + y =100, and we need to maximise A=xy.
Rearrange the constraint to y = 100 - x, and substitute into the product equation.
A = x(100-x) = 100x - x2
Differentiate to find the critical points:
A' = 100 - 2x = 0100 = 2xx = 50
Differentiate again to check that this is indeed a maximum.
A'' = -2
The second derivative is always negative so A = 100x - x2 is always concave so the critical point is indeed a maximum.
Now it is easy to find y since we have x. y = 100 - 50 = 50
So the answer is x = 50 and y = 50.

Answered by Maths tutor

22538 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x


Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


Can I have help with integrating by parts? I am unsure on how to use the formula.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences