Find two positive numbers whose sum is 100 and whose product is a maximum.

Call the two numbers x and y. The constraint is that x + y =100, and we need to maximise A=xy.
Rearrange the constraint to y = 100 - x, and substitute into the product equation.
A = x(100-x) = 100x - x2
Differentiate to find the critical points:
A' = 100 - 2x = 0100 = 2xx = 50
Differentiate again to check that this is indeed a maximum.
A'' = -2
The second derivative is always negative so A = 100x - x2 is always concave so the critical point is indeed a maximum.
Now it is easy to find y since we have x. y = 100 - 50 = 50
So the answer is x = 50 and y = 50.

Answered by Maths tutor

22849 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when y = 2ln(2e-x)


The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


If y = 1/(x^2) + 4x, find dy/dx


The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences