Solve the quadratic inequality: x^2 - 5x + 4 < 0

x2-5x+4 <0First we ignore the inequality and try to solve the equation x2-5x+4=0, which we do via factorising (x-4)(x-1)=0. x = 4 or x=1We draw the graph using our solution, going through the points on the x axis.We look at where the graph goes underneath the x axis; this is the region where the graph is <0 because the y values are less than 0.The values of x for which the graph goes underneath the x axis is the solution. This is between x=1 and x=4. We write this as 1<x<4, remembering the strict inequality because the question uses a strict inequality. We mustn't deviate from the form of the inequality set by the Q.Problem solved!

HH
Answered by Hariz H. Maths tutor

11750 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


Find the inverse of y = (5x-4) / (2x+3)


Differentiate the following... f(x)= 5x^4 +16x^2+ 4x + 5


y = 2/x^3 find and expression for dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning