use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.

So u=2+lnx, therefore du/dx=1/x , we can work out the new upper and new lower limit by substitute in e and 1 into 2+lnx , and we get 2+ln(e)=3 , 2+ln(1)=2Rearrange the differential we get dx=xdu , substitute u and dx and the equation becomes xln(x)/x(u)^2 , top and bottom xs cancel and with the top being ln(x) and u=2+ln(x) , we can also substitute the top with u-2 .we can now intergrate this as (u-2)/(u^2)with the limits being 3 and 2.we get a result of lnu+(2/u) , substitute in 3 and 2 and the final result is -1/3+ln(3/2).

Answered by Maths tutor

4546 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Expand (1+0.5x)^4, simplifying the coefficients.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences