Prove that 2^(80)+2^(n+1)+2^n is divisible by 7 for n belongs to the natural number.

We will prove that 2^(n+2)+2^(n+1)+2^n is divisible by 7 using formula to multiply powers with the same base:a^(b) * a^(c) = a^(b+c)Now looking at our expression we can write:2^(n+2) + 2^(n+1) + 2^n = 2^n * 2^2 + 2^n * 2^1 + 2^n * 1 = 2^n * ( 2^2 +2^1+1 ) = 2^n*(4+2+1) = 7 * 2^nTherefore 7*2^n is always divisible by 7 for n belongs to the natural numbers, because the 2^n will always be a natural number and any natural number which is multiplied by 7 will be divisible by 7.

Answered by Maths tutor

3063 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The perimeter of a right angled triangle is 105cm. The lengths of its sides are in the ratio of 2:6:7. Work out the area of the triangle.


How do I factorise a quadratic equation?


Lily is buying theatre tickets. 4 adult tickets at £15 each 2 child tickets at £10 each A 10% booking fee is added to the ticket price. 3% is then added for paying by credit card. Work out the total ticket price if Lily is paying by card?


If x^2 + 2y = -14 and y = 4x + 1 , by using the quadratic formula, find the possible values for x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning