Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.

Differentiate f(x) with respect to x.You get f'(x) = 2x - 2Turning points occur when the derivative of f(x) = 0. In other words, when f'(x) = 0. This occurs when x=1.Now to determine if maximum or minimum, find f''(x) by differentiating f'(x) wrt x. f''(x) = 2. Since 2 is greater than 0, we know from theory that this point must be a minimum.

Answered by Maths tutor

4219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

"Why is Mathematics important, I wont use any of it when I start work?"


A curve C has the equation y=5sin3x + 2cos3x, find the equation of the tangent to the curve at the point (0,2)


why does log a + log b = log (ab)


A girl saves money over 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. Find the amount she saves in Week 200. Calculate total savings over the 200 week period.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning