Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.

Differentiate f(x) with respect to x.You get f'(x) = 2x - 2Turning points occur when the derivative of f(x) = 0. In other words, when f'(x) = 0. This occurs when x=1.Now to determine if maximum or minimum, find f''(x) by differentiating f'(x) wrt x. f''(x) = 2. Since 2 is greater than 0, we know from theory that this point must be a minimum.

Answered by Maths tutor

4045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the factors of x^3−7x−6


what does it mean if "b^2 - 4ac < 0" for a quadratic equation (eg y = a*x^2 + b*x + c)


integrate (2x)/(x^2+1) dx with limits 1, 0


The curve C has equation y=3x^3-11x+1/2. The point P has coordinates (1, 3) and lies on C . Find the equation of the tangent to C at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning