Find the turning point(s) of the following function f(x) = x^2-2x+4. Determine whether the turning point is a minimum or maximum.

Differentiate f(x) with respect to x.You get f'(x) = 2x - 2Turning points occur when the derivative of f(x) = 0. In other words, when f'(x) = 0. This occurs when x=1.Now to determine if maximum or minimum, find f''(x) by differentiating f'(x) wrt x. f''(x) = 2. Since 2 is greater than 0, we know from theory that this point must be a minimum.

Answered by Maths tutor

4248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


When I try to integrate by parts, I end up in an infinite loop. Why is this, and how do you stop?


Prove by contradiction that 2^(1/3) is an irrational number


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning