Differentiate and then integrate: x^2 + 3x

To differentiate, the rule is to bring the power down to the front and multiply the expression, then take one off the value of the power, for example: d/dx(x2) = (2)x2-1 = 2x, so the answer to the the question given is: (2)x2-1 + (1)3x1-1 = 2x + 3
To integrate, you first add one to the power, and then divide the expression by the new value of the power for example: integrate(x2) = x2+1(1/3)So the answer to the question is: x2+1(1/3) + 3x1+1(1/2) = (1/3)x3 + (1/2)x2 + CRemember to add the constant of integration (C) and sometimes if we were to differentiate just a number, the expression would disappear and so we need to account for this in the integral.

Answered by Maths tutor

4275 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


Differentiate y=ln(ln(x)) with respect to x.


How do I know which trigonometric identity to use in any given situation?


What is exactly differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning