Differentiate and then integrate: x^2 + 3x

To differentiate, the rule is to bring the power down to the front and multiply the expression, then take one off the value of the power, for example: d/dx(x2) = (2)x2-1 = 2x, so the answer to the the question given is: (2)x2-1 + (1)3x1-1 = 2x + 3
To integrate, you first add one to the power, and then divide the expression by the new value of the power for example: integrate(x2) = x2+1(1/3)So the answer to the question is: x2+1(1/3) + 3x1+1(1/2) = (1/3)x3 + (1/2)x2 + CRemember to add the constant of integration (C) and sometimes if we were to differentiate just a number, the expression would disappear and so we need to account for this in the integral.

Answered by Maths tutor

4233 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.


The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences