Differentiate and then integrate: x^2 + 3x

To differentiate, the rule is to bring the power down to the front and multiply the expression, then take one off the value of the power, for example: d/dx(x2) = (2)x2-1 = 2x, so the answer to the the question given is: (2)x2-1 + (1)3x1-1 = 2x + 3
To integrate, you first add one to the power, and then divide the expression by the new value of the power for example: integrate(x2) = x2+1(1/3)So the answer to the question is: x2+1(1/3) + 3x1+1(1/2) = (1/3)x3 + (1/2)x2 + CRemember to add the constant of integration (C) and sometimes if we were to differentiate just a number, the expression would disappear and so we need to account for this in the integral.

Answered by Maths tutor

4552 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we solve a second order, homogeneous, linear differential equation?


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning