475 views

### A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?

Recognise that the intial potential energy and kinetic energy at 10 m/s position should be identical due to the frictionless slope.

mgh = 0.5mv2

10kJ = 0.5 x m x 102

10 000 = 0.5 x m x 100

50m = 10 000

m = 200 kg

Recognise that the weight of the rollercoaster is 200g which is equivalent to the vertical reaction force on the horizontal track.

The frictional force is given by the coefficient of friction multiplied by the vertical reaction force:

F = 200g 0.5 = 100g

The rollercoaster comes to rest when its energy is zero and all of the initial kinetic energy (at 10 m/s) has been dissipated by the frictional force. Therefore, we can write the work done by friction, W, in terms of the length of horizontal track, L and equate this to the kinetic energy:

W = L = 100g L = 10 000

L = 10 000 / 100g = 100 / g = 10.2m

The length of track needed is 10.2m

12 months ago

Answered by Daniel, an A Level Maths tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 310 SUBJECT SPECIALISTS

£24 /hr

Ayusha A.

Degree: BEng electrical and electronics engineering (Bachelors) - Newcastle University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“About me: I am a final year Electrical and Electronic Engineering student at Newcastle University. I took Mathematics, Further Mathematics, Chemistry and Physics as my A-level subjects. I did peer mentoring in university and also have...”

£20 /hr

Dan W.

Degree: Economics and Accounting (Bachelors) - Bristol University

Subjects offered:Maths, Economics

Maths
Economics

“I achieved top grades whilst juggling cricket at a high level. I’ve tutored for Young Einstein Tuition & been a Peer Mentor to those facing personal issues”

£22 /hr

Samuel J.

Degree: Physics (Masters) - Manchester University

Subjects offered:Maths, Physics

Maths
Physics

£20 /hr

Daniel M.

Degree: Engineering (Other) - Durham University

Subjects offered:Maths

Maths

MyTutor guarantee

### You may also like...

#### Other A Level Maths questions

The Curve, C, has equation: x^2 - 3xy - 4y^2 +64 =0 Find dy/dx in terms of x and y. [Taken from Edexcel C4 2015 Q6a]

G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244

How do you solve an equation by completing the square?

How do you prove that (3^n)-1 is always a multiple of 2?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.