A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?

Recognise that the intial potential energy and kinetic energy at 10 m/s position should be identical due to the frictionless slope. 

mgh = 0.5mv2

10kJ = 0.5 x m x 102

10 000 = 0.5 x m x 100

50m = 10 000

m = 200 kg

Recognise that the weight of the rollercoaster is 200g which is equivalent to the vertical reaction force on the horizontal track.

The frictional force is given by the coefficient of friction multiplied by the vertical reaction force:

F = 200g 0.5 = 100g

The rollercoaster comes to rest when its energy is zero and all of the initial kinetic energy (at 10 m/s) has been dissipated by the frictional force. Therefore, we can write the work done by friction, W, in terms of the length of horizontal track, L and equate this to the kinetic energy:

W = L = 100g L = 10 000

L = 10 000 / 100g = 100 / g = 10.2m

The length of track needed is 10.2m

DM
Answered by Daniel M. Maths tutor

4519 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning