Answers>Maths>IB>Article

(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:

Solution: Let us consider the function f(k) = k2 - k -12. Firstly, we want to find out the roots of this function. We calculate the discriminant: Δ = b2 – 4ac = 49 hence we get the roots: k1 = (1-7)/(21) and k2 = (1+7)/(21) hence k1 = -3 and k2 = 4. We know that in ak2 + bk + c = 0 quadratic equation, a>0, so we have the following table sign:For k < -3 ===> f(k) > 0 For k = -3 ===> f(k) = 0 For -3 < k < 4 ===> f(k) < 0 For k = 4 ===> f(k) = 0 For k > 4 ===> f(k) > 0For f(k) < 0, we get that -3 < k < 4For the next part, we know that cos B < ¼, so we have to use the cosine theorem on the line opposite to the angle B:AC2 = AB2 + BC2 – 2ABBCcos B; Let AB = k and let us plug in the known values:16 = k2 + 4 -2k2cos B => cos B = (-12+k2)/(4*k) < ¼ => we get  k2 - k -12 < 0 with solutions -3 < k < 4 

AH
Answered by Alexandru H. Maths tutor

6017 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


When do you use 'n choose k' and where does the formula come from?


How do you integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning