A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.

First draw the curve. Figure out and write the integration problem. Integral4-1 (1+x)(4-x) dx.Expand integral4-1 4 + 3x - x2 dx.= 4-1[4x + 3x2/2) -x2] = 16 + 30 - 64/3 - (-4 + 3/2 + 1/3)= 125/6

VD
Answered by Vishesh D. Maths tutor

3833 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


A curve C has equation 2^x + y^2 = 2xy. How do I find dy/dx for the curve C?


Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning