A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.

First draw the curve. Figure out and write the integration problem. Integral4-1 (1+x)(4-x) dx.Expand integral4-1 4 + 3x - x2 dx.= 4-1[4x + 3x2/2) -x2] = 16 + 30 - 64/3 - (-4 + 3/2 + 1/3)= 125/6

VD
Answered by Vishesh D. Maths tutor

3994 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


integrate (4cos^4 x -4cos^2x+1)^1/2


Differentiate f(x) = x sin(x)


Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning