A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.

First draw the curve. Figure out and write the integration problem. Integral4-1 (1+x)(4-x) dx.Expand integral4-1 4 + 3x - x2 dx.= 4-1[4x + 3x2/2) -x2] = 16 + 30 - 64/3 - (-4 + 3/2 + 1/3)= 125/6

VD
Answered by Vishesh D. Maths tutor

3644 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the set of values for which: x^2 - 3x - 18 > 0


How do we solve a second order, homogeneous, linear differential equation?


How do you differentiate this


Differentiate y= (2x+1)^3. [The chain rule]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences