Use calculus to find the set of values of x for which f(x) = x^3 - 9x is an increasing function.

f(x) is an increasing function when its gradient is positive. To find the the gradient of the the function we must differentiate it:d/dx f(x) = 3x2 - 9. To differentiate we multiply the exponent by the coefficient, then subtract one from the exponent, we repeat this for each term in the function.The second part of this problem is finding when this gradient is positive: i.e. when 3x2 - 9 > 0. This can be rearranged to 3x2 > 9; then x2 > 3. Which is true for any |x| > sqrt(3). Therefore x > sqrt(3) and x < -sqrt(3)

Answered by Maths tutor

5581 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


Find the integral of 4x^2 - 10x + 1/(x^(1/2)), with respect to x, in its simplest form.


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning