Using trigonometric identities, show that (cos(x) + sin(x))^2=1+sin(2x)

First being by expanding the brackets of the formula on the left:  (cos(x) + sin(x))2 = (cos(x) + sin(x))*(cos(x) + sin(x)) = cos2(x)+2cos(x)sin(x)+sin2(x).Now we must use our understanding of trigonometric identities: remember that cos2(x)+sin2(x)=1 and 2cos(x)sin(x)=sin(2x).Substituting these identities back into the expanded form of the equation, we show that (cos(x) + sin(x))2=1+sin(2x)

Answered by Maths tutor

4784 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


Find the first and second derivative of f(x) = 6/x^2 + 2x


Differentiate y=x^(-1/2)-x


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences