Using trigonometric identities, show that (cos(x) + sin(x))^2=1+sin(2x)

First being by expanding the brackets of the formula on the left:  (cos(x) + sin(x))2 = (cos(x) + sin(x))*(cos(x) + sin(x)) = cos2(x)+2cos(x)sin(x)+sin2(x).Now we must use our understanding of trigonometric identities: remember that cos2(x)+sin2(x)=1 and 2cos(x)sin(x)=sin(2x).Substituting these identities back into the expanded form of the equation, we show that (cos(x) + sin(x))2=1+sin(2x)

Answered by Maths tutor

5082 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the identity (sin2x)/(1+(tanx)^2) = 2sinx(cosx)^3


Integrate x*cos(x)


express (3x + 5)/(x^2 + 2x - 15) - 2/(x - 3) as a single fraction its simplest form


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences