A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.

dy/dx = (dy/dt)/(dx/dt) y = t(4-t2 ), then using differentiation of y with respect to t, dy/dt = 4 - 3t2x = t2 + 2, then using differentiation of x with respect to t, dx/dt = 2t Find dy/dx by dividing dy/dt by dx/dt (as the dt terms cancel to leave dy/dx):dy/dx = (4-3t2)/2tNow that the equation of the gradient of the parametric curve has been found (dy/dx), substitute the given value of t to establish the gradient of the curve at t = 2. dy/dx = (4-3(2)2)/2(2) = -2 (the gradient of the curve at t = 2 is dy/dx = -2)

MW
Answered by Micah W. Maths tutor

5308 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.


differentiate y=e^2x


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


Show that the integral ∫(1-2 sin^2⁡x)/(1+2sinxcosx) dx = (1/2) ln2 between the limits π/4 and 0. [5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning