A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.

dy/dx = (dy/dt)/(dx/dt) y = t(4-t2 ), then using differentiation of y with respect to t, dy/dt = 4 - 3t2x = t2 + 2, then using differentiation of x with respect to t, dx/dt = 2t Find dy/dx by dividing dy/dt by dx/dt (as the dt terms cancel to leave dy/dx):dy/dx = (4-3t2)/2tNow that the equation of the gradient of the parametric curve has been found (dy/dx), substitute the given value of t to establish the gradient of the curve at t = 2. dy/dx = (4-3(2)2)/2(2) = -2 (the gradient of the curve at t = 2 is dy/dx = -2)

MW
Answered by Micah W. Maths tutor

4753 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


Integrate ln(x) by parts then differentiate to prove the result is correct


Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences