A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.

dy/dx = (dy/dt)/(dx/dt) y = t(4-t2 ), then using differentiation of y with respect to t, dy/dt = 4 - 3t2x = t2 + 2, then using differentiation of x with respect to t, dx/dt = 2t Find dy/dx by dividing dy/dt by dx/dt (as the dt terms cancel to leave dy/dx):dy/dx = (4-3t2)/2tNow that the equation of the gradient of the parametric curve has been found (dy/dx), substitute the given value of t to establish the gradient of the curve at t = 2. dy/dx = (4-3(2)2)/2(2) = -2 (the gradient of the curve at t = 2 is dy/dx = -2)

MW
Answered by Micah W. Maths tutor

4691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


The parametric equations of a curve are: x = cos2θ y = sinθcosθ. Find the cartesian form of the equation.


What are the most important trig identities we need to know?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences