A curve is defined by parametric equations: x = t^(2) + 2, and y = t(4-t^(2)). Find dy/dx in terms of t, hence, define the gradient of the curve at the point where t = 2.

dy/dx = (dy/dt)/(dx/dt) y = t(4-t2 ), then using differentiation of y with respect to t, dy/dt = 4 - 3t2x = t2 + 2, then using differentiation of x with respect to t, dx/dt = 2t Find dy/dx by dividing dy/dt by dx/dt (as the dt terms cancel to leave dy/dx):dy/dx = (4-3t2)/2tNow that the equation of the gradient of the parametric curve has been found (dy/dx), substitute the given value of t to establish the gradient of the curve at t = 2. dy/dx = (4-3(2)2)/2(2) = -2 (the gradient of the curve at t = 2 is dy/dx = -2)

MW
Answered by Micah W. Maths tutor

5309 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integers n such that 4^(n)-1 is prime.


What is the binomial distribution and when should I use it?


The quadratic equation 2x^2 + 6x + 7 = 0 has roots A and B. Write down the value of A + B and the value of AB


How can I remember when a turning point of a function is a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning