You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.

X2n-1 = (xn+1)(xn-1) Therefore we can say 22n-1 = (2n+1)(2n-1) . As 2n is always even, a multiple of 3 is always either going to be 1 above or 1 below it, e.g. 3 is one below 4 and 9 is 1 above 8, therefore either (2n+1) or (2n-1) is going to be a multiple of 3, making the entire equation 22n-1 divisible by 3 as (2n+1) and (2n-1) are multiplied together, and they keep their factors.

AL
Answered by Abraham L. Maths tutor

7908 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to the equation: ln(3x-7) =5


Let f(x)=e^x sin(x^2). Find f'(x)


Using substitution, integrate x(2 + x))^1/2 where u^2 = 2 + x


(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences