Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.

This exercise is interesting as it combines a variety of concepts fundamental to integration and maths in general. It also allows to introduce the student to the idea of recursion, very often used to solve mathematical and computational problems.Integration by parts will be used to solve the integral and to prove the recursive relation. Finally Such relation will be exploited to find the third element of the series. Solution will be provided on the whiteboard.

MC
Answered by Marco C. Maths tutor

2739 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.


Find the point of intersection of the lines y=2x-7 and 4y-2=3x


How do you differentiate (3x+cos(x))(2+4sin(3x))?


Find the stationary points of the graph x^3 + y^3 = 3xy +35


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning