Find dy/dx, given that y=(3x+1)/(2x+1)

Since the equation for y is given in the format y=u/v, the use of the quotient rule is the easiest way to find the differential of this equation. The quotient rule states, (vu'-uv')/v^2 is equal to the differential of u/vIn this situation u=3x+1 and v=2x+1. The first step to take would be to differentiate the individual parts of the equation so, u'=3 and v'=2.These 4 values can then be put into the quotient rule in order to reach the result of the differential. dy/dx=(3(2x+1)-2(3x+1))/(2x+1)^2, which can be simplified down to dy/dx=1/(2x+1)^2

Answered by Maths tutor

4842 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer


What is the derivative of y=(e^(2x))(sin(3x))


A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


Differentiate cos(2x)/(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences