Find dy/dx, given that y=(3x+1)/(2x+1)

Since the equation for y is given in the format y=u/v, the use of the quotient rule is the easiest way to find the differential of this equation. The quotient rule states, (vu'-uv')/v^2 is equal to the differential of u/vIn this situation u=3x+1 and v=2x+1. The first step to take would be to differentiate the individual parts of the equation so, u'=3 and v'=2.These 4 values can then be put into the quotient rule in order to reach the result of the differential. dy/dx=(3(2x+1)-2(3x+1))/(2x+1)^2, which can be simplified down to dy/dx=1/(2x+1)^2

Answered by Maths tutor

4685 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


How can you remember what sin(x) and cos(x) differentiate or integrate to?


Find two values of k, such that the line y = kx + 2 is tangent to the curve y = x^2 + 4x + 3


How do I sketch a graph of a polynomial function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences