Find the derivative of the following function with respect to x. y = 5e^x−2xsin(x)

So, what I would be looking for from students who are answering this questions are the application of differentiation techniques that they would have been taught at Year 12. The first step in answering this question is that students know that they have to apply the product rule for differentiable functions. They would first need to use the rule for differentiating exponential functions to differentiate the first term of y which we will denote f = 5e^x then df/dx = 5e^x. As this function has only one x variable then we are not required to apply the product rule and can proceed. Then, differentiate -2xsin(X) with respect to x where students would be required to apply the product rule in order to differentiate this term. So let z = -2xsin(x) and dz/dx = vu'+uv' where u = -2x and v = sin(x). So we have split the original function into two separate functions of x as there are two functions of x which are multiplied together which would require us to apply the product rule. Then, we would have to calculate the values of u' and v' where u' and v' are the derivates of u and v respectively. So we would get that, u' = -2 and v' = cos(x). Furthermore, then substituting the values of u, u', v, v' into the product rule formula, you would get that dz/dx = 5e^x -2sin(x) -2xcos(x), where we have combined df/dx and dz/dx to get a final solution to dy/dx.

NH
Answered by Niall H. Maths tutor

4242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


How to do Integration by Parts?


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning