Find the turning points on the curve with the equation y=x^4-12x^2

y = x^4 - 12x^2
dy/dx = 4x^3 - 24x
The turning points are where dy/dx = 0
4x^3 - 24x =0
x(4x^2 - 24) = 0 Therefore one of the turning points is at x = 0
4x^2 - 24 = 0
4x^2 = 24
x^2 = 6
x = +/- √6
Substitute the x coordinates back into the original equation to find y
The final coordinates are (0,0), (√6,-36) and (-√6,-36)

Answered by Maths tutor

4370 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


Find the first and second derivative of f(x) = 6/x^2 + 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences