Find the turning points on the curve with the equation y=x^4-12x^2

y = x^4 - 12x^2
dy/dx = 4x^3 - 24x
The turning points are where dy/dx = 0
4x^3 - 24x =0
x(4x^2 - 24) = 0 Therefore one of the turning points is at x = 0
4x^2 - 24 = 0
4x^2 = 24
x^2 = 6
x = +/- √6
Substitute the x coordinates back into the original equation to find y
The final coordinates are (0,0), (√6,-36) and (-√6,-36)

Related Maths A Level answers

All answers ▸

When given an equation in parametric form, how can you figure out dy/dx?


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Find the first derivative of y=2^x


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences