Find the turning points on the curve with the equation y=x^4-12x^2

y = x^4 - 12x^2
dy/dx = 4x^3 - 24x
The turning points are where dy/dx = 0
4x^3 - 24x =0
x(4x^2 - 24) = 0 Therefore one of the turning points is at x = 0
4x^2 - 24 = 0
4x^2 = 24
x^2 = 6
x = +/- √6
Substitute the x coordinates back into the original equation to find y
The final coordinates are (0,0), (√6,-36) and (-√6,-36)

Related Maths A Level answers

All answers ▸

If y = ln (x+1) sin x , find dy/dx


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Find the first four terms in the binomial expansion of (2 + x) ^5


Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy