Find the x values for stationary points in the curve y=3sin(2x) for 0<x<180

Firstly we differentiate the equation y=3sin(2x) w.r.t. x.By using the chain rule, we find the dy/dx=6cos(2x)Since a stationary point in the curve is a point where the gradient is 0, we can find them by finding the x values for when dy/dx=0.Therefore, 6cos(2x)=0cos(2x)=02x= cos-1(0) since cos-1(0)=90, 270 x=45, 135

Answered by Maths tutor

3853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I integrate the indefinite integral x^2 dx?


A stone was thrown with velocity 20m/s at an angle of 30 degrees from a height h. The stone moves under gravity freely and reaches the floor 5s after thrown. a) Find H, b)the horizontal distance covered


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


Differentiate: y = 3x^2 + 4x + 1 -4x^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning