Find the x values for stationary points in the curve y=3sin(2x) for 0<x<180

Firstly we differentiate the equation y=3sin(2x) w.r.t. x.By using the chain rule, we find the dy/dx=6cos(2x)Since a stationary point in the curve is a point where the gradient is 0, we can find them by finding the x values for when dy/dx=0.Therefore, 6cos(2x)=0cos(2x)=02x= cos-1(0) since cos-1(0)=90, 270 x=45, 135

Answered by Maths tutor

3655 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


Given y = x^3 + 4x + 1, find the value of dy/dx when x=3


Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2


Differentiate 3x^2 + 6x^5 + 2/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning