Find the x values for stationary points in the curve y=3sin(2x) for 0<x<180

Firstly we differentiate the equation y=3sin(2x) w.r.t. x.By using the chain rule, we find the dy/dx=6cos(2x)Since a stationary point in the curve is a point where the gradient is 0, we can find them by finding the x values for when dy/dx=0.Therefore, 6cos(2x)=0cos(2x)=02x= cos-1(0) since cos-1(0)=90, 270 x=45, 135

Answered by Maths tutor

3600 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y(x+y)=3 evaluate dy/dx when y=1


https://1drv.ms/w/s!Ajvn5XL_gYTXgaZeAS-K7z62VSxjYw?e=lnAZLx


solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180


Show by induction that sum_n(r*3^(r-1))=1/4+(3^n/4)*(2n-1) for n>0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences