Find the x values for stationary points in the curve y=3sin(2x) for 0<x<180

Firstly we differentiate the equation y=3sin(2x) w.r.t. x.By using the chain rule, we find the dy/dx=6cos(2x)Since a stationary point in the curve is a point where the gradient is 0, we can find them by finding the x values for when dy/dx=0.Therefore, 6cos(2x)=0cos(2x)=02x= cos-1(0) since cos-1(0)=90, 270 x=45, 135

Answered by Maths tutor

3559 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate ln( x^2 )


Simplify the following C4 question into it's simplest form: (x^4-4x^3+9x^2-17x+12)/(x^3-4x^2+4x)


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


What are the parameters of the Poisson distribution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences