A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.

y = 3x4 - 8x3 - 3Bringing the power down on each term and subtracting one from the power (as to differentiate, nxm —> nmxm-1), we get for each derivative:dy/dx = 12x3 - 24x2d2y/dx2 = 36x2 - 48x.This answers the first part.When a curve has a stationary point at a point X, f’(X) = 0 [note: f’(x) is another notation for dy/dx and f’’(x) for d2y/dx2 and so on]. So, to verify that our function has a stationary point at x = 2, we substitute x = 2 into the first derivative. 12(2)3 - 24(2)2 = 12(8) - 24(4) = 96 - 96 = 0. Hence, C has a stationary point at x = 2.To determine the nature of this stationary point, we substitute x = 2 into the second derivative. If f’’(x) < 0, the stationary point is a local maximum point of the function. If f’’(x) > 0, the stationary point is a local minimum point of the function. If f’’(x) = 0, it could be either.So, substituting in x = 2, 36(2)2 - 48(2) = 36(4) - 48(2) = 144 - 96 = 48. 48 > 0, and so the stationary point is a local maximum.

CW
Answered by Connor W. Maths tutor

5910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Integration by parts; ∫e^x sin(x) dx


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences