For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?

A quadratic equation ax2 +bx+c=0 will have only one unique solution if and only if b2-4ac=0. If we apply this to the equation in the question, we get that k2-24=0. If we solve this equation we get two solutions : k = -241/2 or k=241/2. These are the values of k for which the quadratic equation 2x2 +kx+3=0 has only one solution.

ER
Answered by Ewan R. Maths tutor

3415 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


Differentiate ln(x)/x


Using first principles find the differential of x^2


How do I know if a curve is convex?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences