Work out the equation of the tangent at x = 3, knowing that f(x) =x^2

Currently, we know that:f(x) = x2To find the equation of the tangent you need the gradient and the y-value of the graph at x = 3So, you can differentiate f(x):f'(x) = 2xlet x = 3: f(x) = 9 f'(x) = 6the equation of the line is written by:y - y1 = m(x-x1)By substitution:y - 9 = 6(x - 3)y = 6x - 9 --> this is the answeri do have a laptop with a touch screen and a pen, so it is easy for me to write

AA
Answered by Arnav A. Maths tutor

2727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use numerical methods to find the root of the equation F(x) = 0?


How would you show that a vector is normal to a plane in 3D space?


find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning