Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2

I haven't yet figured out how to write in proper mathematical notation on here, and my drawing pad is yet to arrive, so please forgive the formatFirst, the formula for the volume of revolution is V= pi * the integral of (y)^2 dxIn this case it means V = pi * integral (x^4)dx between 0<x<2integrating x^4 gives 0.2 x^5 as we reverse the process of bringing down the power and multiplying, henceV= pi * [0.2 x^5] between 0<x<2Substitute values givesV=pi*(0.22^5-0.20)V=pi0.232V=6.4*pior V=20.106....

Answered by Maths tutor

2969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


Differentiate (x^2)cos(3x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning