Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n

To show this we should consider when n is odd and when n is even,If n is odd then we can find an m such that n=2m+1. Substituting n=2m+1 and expanding gives 8m^3+12m^2+6m+1+12m^2+12m+3+4m+2+1=8m^3+24m^2+22m+7.We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+11m)+7. This is an even number added to an odd one, so it is odd.if n is even we can find an m such that n=2msubstituting n=2m and expanding gives 8m^3+12m^2+4m+1We see that 2 divides all the coeffients except the last one. So we can rearrange it as 2(4m^3+12m^2+4m)+1This is an even number added to an odd one, so it is odd.In conclusion, since n has to be either odd or even, and since both odd and even make n^3+3n^2+2n+1 odd, we get that n^3+3n^2+2n+1 is odd for any integer n.

AP
Answered by Alistair P. Maths tutor

5179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning