Prove algebraically that n^3 +3n -1 is odd for all positive integers n

There are 2 possible cases.

First when n is even, then let n = 2k where k is a positive integer.
Substituting n = 2k gives us:
(2k)3 + 3(2k) -1
= 8k3 + 6k - 1
[We are trying to prove that it is odd so try and write it in the form 2m + 1 or 2m - 1]
= 2(4k3 + 3k) - 1
Since 2(4k3 + 3k) is a multiple of 2 it is even so by taking away 1 makes it odd, therefore when n=2k the expression is odd.

The second case is when n is odd, then let n=2k + 1 where k is a positive integer (including 0).
Substituting n=2k + 1 gives us:
(2k+1)3 + 3(2k+1) -1
[use the binomial theorem to expand (2k+1)3]
(2k)3 + 3(2k)2(1) + 3(2k)(1)2 + (1)3 + 6k + 3 - 1
=8k3 + 12k2 + 6k + 1 + 6k + 2
=8k3 + 12k2 + 12k + 3
=2(4k3 + 6k2 + 6k) + 3
This is an even number + 3 which gives us and odd number, therefore when n=2k+1 the expression is odd.
Therefore we can conclude that for all n, n3 + 3n - 1 is odd.

Answered by Maths tutor

22501 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


How do I find the inverse of a function?


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


Differentiate with respect to x y=(x^3)ln2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning