Write x^2 + 6x - 10 in the form ((x+a)^2)+b?

To find the value of a divide the coeffecient of x. Here this would be 6/2 which = 3. If we were to expand (x + 3)^2 + b this would give us:x^2 + 3x +3x + 3^2 +b which simplifies to x^2 + 6x + 3^2 + b. If we compare the coeffecients of this with the given quadratic, we can see the constant term is 3^2 + b = - 10If we rearrange this we can see b = -19Therefore x^2 + 6x - 10 in the form ((x+a)^2)+b is (x + 3)^2 - 19.The b is always equal to a^2 - [constant term of the quadratic].

GG
Answered by Gunalini G. Maths tutor

14412 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write the equation x^2 + 6x - 40 = 0 in the form (x + a)^2 - b = 0 and then solve for x


How do you go about rearranging equations where the required subject appears on both sides? Such as making x the subject of 7x + a = 3x + b.


Solve the equation (3x + 2)/(x-1) + 3 = 4


The Tour de France is 2162miles long. A cyclist knows his average speed his 12.37 miles/hour from his previous races. For the Tour de France the cyclist knows he will cycle for 10 hours a day. Estimate how many days it will take him to complete the race.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning