Write x^2 + 6x - 10 in the form ((x+a)^2)+b?

To find the value of a divide the coeffecient of x. Here this would be 6/2 which = 3. If we were to expand (x + 3)^2 + b this would give us:x^2 + 3x +3x + 3^2 +b which simplifies to x^2 + 6x + 3^2 + b. If we compare the coeffecients of this with the given quadratic, we can see the constant term is 3^2 + b = - 10If we rearrange this we can see b = -19Therefore x^2 + 6x - 10 in the form ((x+a)^2)+b is (x + 3)^2 - 19.The b is always equal to a^2 - [constant term of the quadratic].

GG
Answered by Gunalini G. Maths tutor

13704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation 6x + 2y = -3, 4x - 3y =11


Make x the subject of the equation. y = 4( 2 + x )/ (6x -1)


How should I calculate the values of a and b when a(4x+12) is equivalent to 2x+36b?


Expand and simplify (x-4)(2x+3y)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning