Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

RM
Answered by Rebecca M. Maths tutor

5928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integral of xe^-x dx


Differentiate the expression x^6+5x^4+3 with respect to x


https://1drv.ms/w/s!Ajvn5XL_gYTXgaZeAS-K7z62VSxjYw?e=lnAZLx


Find dy/dx when y = x^2(cos(x)).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning