Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

RM
Answered by Rebecca M. Maths tutor

5926 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


Differentiate y = (6x-13)^3 with respect to x


Integrate 3x*2 using limits of 3 and 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning