Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

RM
Answered by Rebecca M. Maths tutor

5925 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the derivative of f(x) = x^3 + 2x^2 - 5x - 6. Find all stationary points of the function.


show that tan(x)/sec2(x) = (1/2)sin(2x)


How do I differentiate (cosx)/x^2


How do you find the point of intersection of two vector lines?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning