Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

RM
Answered by Rebecca M. Maths tutor

5909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


Consider the function f (x) = (2/3) x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient: (a) find f'(x) and f''(x) and (b) if you know that f(x) has a stationary point at x = 2, use this information to find b.


Express (x + 1)/((x^2)*(2x – 1)) in partial fractions


Express 5/[(x-1)(3x+2)] as partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning