Given y=(1+x^3)^0.5, find dy/dx.

In order to solve this question, we need to use the chain rule when differentiating. The chain rule formula is dy/dx= (dy/du)(du/dx). Let u=1+x3Differentiating with respect to x gives du/dx=3x2We now have y=u0.5Differentiating with respect to u gives dy/du=0.5u-0.5=0.5(1+x3)-0.5Therefore dy/dx= (dy/du)(du/dx)= 0.5(1+x3)-0.5*(3x2)= 1.5x2*(1+x3)-0.5

RM
Answered by Rebecca M. Maths tutor

5573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x*ln(x) with respect to x


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


Derive 2*x^(3/2)+x+4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning