Prove that the product of 3 consecutive integers is divisible by 6

If you set the three consecutive integers to be n, n+1 and n+2, we know that one of the numbers must be divisible by 2 and one must be divisible by 3. For example if you had your three numbers as: 5, 6, 7, one is divisible by 3 and one is divisible by 2, as this is the case with all consecutive three numbers. Therefore as we are multiplying the numbers together, multiplying a multiple of 3 and a multiple of 2 gives us a multiple of 6. Hence the product will be divisible by 6.

SK
Answered by Shreeya K. Maths tutor

16221 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations.


Line A passes through point Q(2,3). Line B is parallel to line A and has the equation 2y-3x=4. What is the equation of line A?


Jason and Mary leave their houses at the same time. They travel towards each other, Mary at 20km/h and Jason at 15km/h. They pass each other after an hour and a half. What was the original distance between them when they started?


Solve 3x² + 6x – 2 = 0. Give your solutions correct to 2 decimal places [calculator paper]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning