Solve the following simultaneous equations to give a value for both x and y: 3x+3y=9 and 2x+3y=5

  1. Subtract the bottom equation from the top equation to get 3x-2x=9-5 (you don't see no y values in this equation as the y's have disappeared and cancelled eachother out as 3y-3y=0)2) So 3x-2x=9-5 equals 1x=4 (which is the same as x=4)3) Now we know x=4, substitute this back into one of the equations to find y, shown below: 3x+3y=9 with x substituted in becomes 3(4)+3y=9 which is equal to 12+3y=94) 12+3y=9, bring the +12 across the equals sign to become -12, giving you 3y=9-12 so 3y=-35) If 3y=-3, divide both sides by 3 to give y=-1 6) So the solution is: x = 4, y = -1 which are your two answers to the simultaneous equation :)
AF
Answered by Amy F. Maths tutor

3600 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sophie had 3 piles of coins, A, B and C. Altogether there was £72. Pile B had twice as much as pile A. Pile C had three times as much as pile B. How much money was in Pile C?


Write x² + 4x -16 = 0 in the form (x+a)² - b = 0. Solve the equation giving your answer in surd form as simply as possible.


simplify (2q+4)/(p(p+1)) -q/p


What is the size of the exterior and interior angle of a regular 13 sided polygon?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning