An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.

We start off by constructing simultaneous equations as there are two variables - a and d - that we do not know. We use the formula:an = a + (n-1)di) 11.1 = a + 9dii) 7.1 = a + 49d
i) - ii) gives you 4 = - 40d
Rearrange to make d the subject, you get d = 4/-40 = -0.1To find a, we plug in d to one of our equations and rearrange to get a.So using i) we get a = 11.1 - 9d which is a = 11.1 + 0.9 = 12
Therefore, a = 12 and d= -0.1
To get the sum of the first 50 terms, we use the formula Sn = n/2 (2a + (n-1)d)So S50= 25 (24 + (49 x -0.1)) = 477.5Therefore the sum of the first 50 terms is 477.5.

Answered by Maths tutor

4013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate e^x . sin(x)


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Solve the following inequality and shade the region to which it applies on a graph. 10x(squared) < 64x - 24


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences