The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.

The equation for the area of a triangle is 1/2 x base x height
So, first we need to know the length of the base and the height of the triangle.
We know that the perimeter of the triangle is 72cm, and the ratio of the sides is 3 : 4 : 5. To work out the length of the three sides, we add up each part of the ratio (3 + 4 + 5 = 12), and divide the perimeter by it (72 / 12 = 6).
Then we multiply each part of the ratio by 6, so we have the sides being 18 : 24 : 30. We can check that these total 72.
Now, the hypotenuse of the triangle is always the longest side; and since it is a right angled triangle we know that one of the sides will be the base and one will be the height. Note that because the original equation has us multiplying the two values, it does not matter which is which. So base = 3 x 6 = 18 and height = 4 x 6 = 24, or vice versa.
Putting these back into the equation, we have area = 1/2 x 18 x 24 = 216cm2

AB
Answered by Alison B. Maths tutor

3457 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand and simplify linear equations?


Why is completing the square useful and how do you do it?


The Tour de France is 2162miles long. A cyclist knows his average speed his 12.37 miles/hour from his previous races. For the Tour de France the cyclist knows he will cycle for 10 hours a day. Estimate how many days it will take him to complete the race.


Given a right-angled triangle with an angle of 35 degrees and an Opposite side of 12cm, calculate the length of the hypotenuse to 3 significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences