A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.

(a) i) dy/dx= 2x-2-12x-1/2ii) d2 y/dx2 = 2+6x-3/2(b) Substitute x=4 into dy/dx= 2x-2-12x-1/2 Show that dy/dx= 0 and state 'hence there is a stationary point' (c) Substitute x=4 into d2 y/dx2 = 2+6x-3/2 (=2.75) d2 y/dx2>0 and state 'hence minimum'

Answered by Maths tutor

9158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


If 2 log(x + a) = log(16a^6), where a is a positive constant, find x in terms of a


What is a parametric equation?


Differentiate x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning