How would you differentiate ln(x^2+3x+5)?

Here we need to use the chain rule because we have a function (natural log) of another function (x^2+3x+5). Let u=x^2+3x+5, and differentiate lnu with respect to u, this gives us 1/u. Then we differentiate x^2+3x+5 with respect to x, so we get 2x+3. Now the chain rule says: dy/dx=dy/dudu/dx, so we have dy/dx = (1/u)(2x+3)=(2x+3)/(x^2+3x+5)

OH
Answered by Oli H. Maths tutor

24582 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the distance between two point in the plane?


Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


Is there an easy way to remember all the basic graphical transformations?


A curve has parametric equations x= 2sin(t) , y= cos(2t) + 2sin(t) for -1/2 π≤t≤ 1/2π , show that dy/dx = - 2sin(t)+ 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning