How would you differentiate ln(x^2+3x+5)?

Here we need to use the chain rule because we have a function (natural log) of another function (x^2+3x+5). Let u=x^2+3x+5, and differentiate lnu with respect to u, this gives us 1/u. Then we differentiate x^2+3x+5 with respect to x, so we get 2x+3. Now the chain rule says: dy/dx=dy/dudu/dx, so we have dy/dx = (1/u)(2x+3)=(2x+3)/(x^2+3x+5)

OH
Answered by Oli H. Maths tutor

23540 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0


Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


Solve the simultaneous equations x + y = 1 , x^2 -2xy+y^2=9


A circle C with centre at the point (2, –1) passes through the point A at (4, –5).....


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning