Problem of Optimisation: A company is designing a logo. The logo is a circle of radius 4 inches with an inscribed rectangle. The rectangle must be as large as possible.

First, draw a diagram showing the rectangle, the circle and the unknowns . Then find the equations representing this problem (equation of a circle of center 0, x2 +y2=42 (1) and of the area of the rectangle A=2x*2y (2)). Substitute one variable of eq(1) in eq (2) ==> A= 4xROOT(16-x2) (3).The largest area can be found by differentiating eq(3) (to find the local maximum of the equation). dA/dx = (64-8x2)/ROOT(16-x2) (using the formula for the differentiation of the product of two functions).The stationary points are the points for which dA/dx = 0. We compute and find x=ROOT(8) or x= - ROOT(8).To verify it is a maximum, we can take the second derivative of this point (and it must be less than 0) or plug the value just lower and higher than ROOT(8) in the first derivative to see if the function is increasing or decreasing at those points. Finally, determine the area by plugging ROOT(8) in (2), which gives A=32 sq inches

Answered by Maths tutor

6735 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Evaluate the integral between 5 and 3 for xe^x


Show that x^2 +6x+ 11 can be written as (x+p)^2 +q


What are the main factors when deciding whether or not the Poisson distribution is a suitable model?


f(x) = 2x^3 – 7x^2 + 4x + 4 (a) Use the factor theorem to show that (x – 2) is a factor of f(x). (2) (b) Factorise f(x) completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences