Solve the following simultaneous equations: 3x + y = 11, 2x + y = 8

first: look at the 2 equations and see if there are any matching coefficients. eg the same number before x or y in both of the equations. in these examples both y values have the coefficient 1. second: either add or subtract the 2 equations to remove the y values. in this case need to do equation 1 - equation 2 in order for y to equal 0. so (3x + y = 11) - (2x +y = 8) = x = 3 - this is the x value of the equations third: find the y value by substituting the known x value (3) into one of the simultaneous equations = 2(3) + y = 8 6 +y = 8 y = 2 - this is the y value fourth: you can check you have the right values by substituting them into one of the equations and seeing if it works. eg 3(3) + 2 = 11 9+2 = 11 11 = 11

RS
Answered by Rebecca S. Maths tutor

3055 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If two linear equations, y = x + 4 and y = 2x + c, intersect at x = 1, find c.


Lily goes on a car journey. For the first 30 min. her average speed is 40 mph. She then stops for 15 min. She then completes the journey at an average speed of 60 mph. The total journey time is 1 h. What is her overall average speed?


Write 144 as a product of its prime factors


If -3x + 10y = -100 and 13x + 10y = 60, solve for x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning