Solve the following simultaneous equations: 3x + y = 11, 2x + y = 8

first: look at the 2 equations and see if there are any matching coefficients. eg the same number before x or y in both of the equations. in these examples both y values have the coefficient 1. second: either add or subtract the 2 equations to remove the y values. in this case need to do equation 1 - equation 2 in order for y to equal 0. so (3x + y = 11) - (2x +y = 8) = x = 3 - this is the x value of the equations third: find the y value by substituting the known x value (3) into one of the simultaneous equations = 2(3) + y = 8 6 +y = 8 y = 2 - this is the y value fourth: you can check you have the right values by substituting them into one of the equations and seeing if it works. eg 3(3) + 2 = 11 9+2 = 11 11 = 11

RS
Answered by Rebecca S. Maths tutor

3057 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right angled triangle has two smaller sides length 3 and 4, what is the length of its longest side?


b)You are given g(x) = ax + b; You are also given that g(0) = 4 and g(1) = - 6; Find the value of a and the value of b


Solve: (6x + 4)/(2x - 2) + 6 = 8


Expand and simplify (x+2)(x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning