A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)

Un+1=1/Un where U1= 2/3First of all, we need to find U2 and U3 and so on, up until we notice a pattern in the answers. U2 = 1/(2/3) = 3/2U3 = 1/(3/2) = 2/3As we can see, U1 and U3 are equal, and so we know that for every 'n' that is odd, Un will equal 2/3. This is similar for ever 'n' that even where Un will equal 3/2.Therefore in total for this summation, there will be 50 lots of '2/3' and 50 lots of '3/2' so the answer will be 50(2/3) + 50(3/2) = 325/3

Answered by Maths tutor

5028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


A particle of mass M is being suspended by two ropes from a horizontal ceiling. Rope A has a tension of 15N at 30 deg and rope B has a tension of xN at 45 deg, find M assuming the particle remains stationary.


A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


What is the best way to prove trig identities?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning