A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)

Un+1=1/Un where U1= 2/3First of all, we need to find U2 and U3 and so on, up until we notice a pattern in the answers. U2 = 1/(2/3) = 3/2U3 = 1/(3/2) = 2/3As we can see, U1 and U3 are equal, and so we know that for every 'n' that is odd, Un will equal 2/3. This is similar for ever 'n' that even where Un will equal 3/2.Therefore in total for this summation, there will be 50 lots of '2/3' and 50 lots of '3/2' so the answer will be 50(2/3) + 50(3/2) = 325/3

Answered by Maths tutor

4171 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of a 2x2 matrix


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


Differentiate with respect to x: y=xln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences