Prove that the square of an odd number is always 1 more than a multiple of 4

2n+1 will always be an odd number (e.g. if n is equal to 3 the answer would be 7, an odd number) So, we square 2n+1 and write this as (2n+1)2 2n +12n 4n2 2n+1 2n 1Then multiple out the brackets to give 4n2+4n+1 We then put the equation into brackets again 4(n2 + n) +1 The 4(n2 + n) term will aways be a multiple of 4Therefore we have proved that:(2n+1)2 = 4(n2 + n) +1 and therefore have proved that the square of an odd number is always 1 more than a multiple of 4.


Answered by Maths tutor

2965 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Y=3x^2-2 ( Make x the ubject of the formula


You have a bag of 60 coloured marbles. 1/10 are red, 3/5 are blue, and the rest are green. How many green ones are there?


Aidan, Emily and Seth shared some sweets in the ratio 2 : 7: 4 Seth got 16 more sweets than Aidan. Work out the total number of sweets they shared.


Solve the two simultaneous equations: 2y + x = 8 [A] and 1 + y = 2x [B]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning