If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

NB
Answered by Nishit B. Maths tutor

9164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning