If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

NB
Answered by Nishit B. Maths tutor

9570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of y=x^2-6x-16 at the point where the curve crosses the x-axis


Calculate dy/dx of the following equation: y = 3x^3 - 6x^2 + 2x - 6


Proof by Induction - "What's the point if we already know the answer?"


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning