If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

NB
Answered by Nishit B. Maths tutor

9118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (sin(x))^6 - Further mathematics (De Moivre's theorem)


Explain how Differentiation by the chain rule works


If I throw a ball, of mass 2kg, straight up in the air, with velocity 10ms-1, how long until it lands? Assume gravity = 10ms-2


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning