If y = (1+3x)^2, what is dy/dx?

A good approach to solve this is to use the chain rule of differentiation. The chain rule states: dy/dx= (dy/du)*(du/dx).

In this case let u = 1+3x, so y = u^2.

Then dy/du = 2u and du/dx = 3,

so dy/dx = (2u)*3 = (2(1+3x))*3 = 6+18x

NB
Answered by Nishit B. Maths tutor

9034 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cup of coffee is cooling down in a room following the equation x = 15 + 70e^(-t/40). Find the rate at which the temperature is decreasing when the coffee cools to 60°C.


The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


Why does differentiation give us the results that it does?


Can you explain the product rule when differentiating?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning