Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0

The general equation for a circle is as follows:(x-a)^2+(y-b)^2=r^2where (a,b) are the coordinates of the centre of the circle and r is the radius of the circle.x^2+y^2-4x-8y+11=0In this case, group all x terms and y terms together, giving: x^2-4x+y^2-8y+11=0Then, complete the square on the x terms and then on the y terms:(x-2)^2-4+(y-4)^2-16+11=0Add all the numbers outside the brackets together:(x-2)^2+(y-4)^2-9=0Move 9 to the right hand side so we have our equation in the form of the general equation:(x-2)^2+(y-4)^2=9Comparing to the general equation:a=2,b=4 so the coordinates of the centre are (2,4)r^2=9 so r=3*note that r cannot be -3 because it describes a distance and you cannot have a negative distance.

MC
Answered by Megan C. Maths tutor

3627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area between the positive x axis and the line given by y=-(x^2)+2x


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C


Find the stationary points on the curve y = x^3 + 3x^2 - 9x - 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning