Work out the point at which the line y = x^2 + 4x + 4 hits the y-axis and the x value of its turning point.

To work out the point at which the line hits the y axis, we need to know where x = 0. In order to do this, we need to set x = 0, and so we are left with x = 4.
To find the turning point, we need to differentiate the equation. We need to find the derivative of y with respects to the derivative to x. To do this, we remove the x power and -1 times the multiple of x, multiplying the value by its original power i.e. x would go to 1 and x^2 would go to 2x. In this case, we would get dy/dx = 2x + 4, and since we know that the turnig point is the point on a graph where the curve's gradient is 0, we set dy/dx = 0. Solving and rearranging for x, we get 2x = 4, and x = -2.

EC
Answered by Ethan C. Maths tutor

2739 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3,4), Q has the coordinates (a,b), a line perpendicular to PQ is given by the equation 3x+2y=7. Find an expression for b in terms of a


Prove that the square of an odd number is always 1 more than a multiple of 4


Write down the value of 169^1/2 (one hundred and sixty nine to the power of a half)


Solve the simultaneous equations 2x + y = 18 and x - y = 6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences