Work out the point at which the line y = x^2 + 4x + 4 hits the y-axis and the x value of its turning point.

To work out the point at which the line hits the y axis, we need to know where x = 0. In order to do this, we need to set x = 0, and so we are left with x = 4.
To find the turning point, we need to differentiate the equation. We need to find the derivative of y with respects to the derivative to x. To do this, we remove the x power and -1 times the multiple of x, multiplying the value by its original power i.e. x would go to 1 and x^2 would go to 2x. In this case, we would get dy/dx = 2x + 4, and since we know that the turnig point is the point on a graph where the curve's gradient is 0, we set dy/dx = 0. Solving and rearranging for x, we get 2x = 4, and x = -2.

EC
Answered by Ethan C. Maths tutor

3145 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how do i factorise a quadratic equation when the coefficient of x^2 is not 1?


Shape ABCD is a parallelogram. Y is the mid-point of AB and Z is on BC such that BZ=1/2ZC. Given that AB=a and BC=b, describe, in terms of a and b: a) AC b)CY c)YZ


f(x) = 2x + c, g(x) = cx + 5, fg(x) = 6x + d. c and d are constants. Work out the value of d. 3 marks.


Solve the simultaneous equations. x^2 + 2y=9, y-x=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning