Differentiate the equation y = x^2 + 3x + 1 with respect to x.

A simple way to differentiate an equation with respect to x is to reduce each x components power by one and multiply each x component by their original power.

Looking at the equation y = x^2 + 3x + 1, the component x^2 will be reduced from a power of 2 to a power of 1 and multiplied by its original power 2 to give 2x. The component 3x is reduced from a power of 1 to a power of zero and multiplied by its original power of 1 to give 3. As 1 is a constant and not an x component it dissapears in the differentiated eqution.

This therefore gives an answer of dy/dx = 2x + 3.

JB
Answered by Jake B. Maths tutor

4947 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


How do you integrate ?


y = 1/x^2, differentiate y (taken from AQA 2018 past paper)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning