Differentiate the equation y = x^2 + 3x + 1 with respect to x.

A simple way to differentiate an equation with respect to x is to reduce each x components power by one and multiply each x component by their original power.

Looking at the equation y = x^2 + 3x + 1, the component x^2 will be reduced from a power of 2 to a power of 1 and multiplied by its original power 2 to give 2x. The component 3x is reduced from a power of 1 to a power of zero and multiplied by its original power of 1 to give 3. As 1 is a constant and not an x component it dissapears in the differentiated eqution.

This therefore gives an answer of dy/dx = 2x + 3.

JB
Answered by Jake B. Maths tutor

5197 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


How do I do implicit differentiation?


∫ log(x) dx


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning