A rectangle has sides of length 4x cm and (x+3)cm and has an area less than 112 cm^2, find the set of values x can take

Derive an inequality for the area. 1) As area = width * length then area is 4x * (x+3). 2) Area is less than ( < ) 112 so inequality is 4x* (x+3) < 112. 3) Expand the brackets and then subtract 112 from both sides to get 4x2 +12x -112 = 0. 4) Divide both sides by 4 to simplify to x2+ 3x -28 = 0. 5) Factorise (x+7)(x-4) = 0 the solutions to x2+3x-28 = y cross the x axis at 4 & -7. 6) As x2+3x-28 < 0 for original inequality to be true and positive shaped graph solutions under the x axis, but as side length can’t be negative or zero actual range of values becomes 0 < x < 4

HT
Answered by Harry T. Maths tutor

3666 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simultaneous equations - Find the values of y and x: 3


A ladder 6.8m long is leaning against a wall. The foot of the ladder is 1.5m from the wall. Calculate the distance the ladder reaches up the wall.


Simplify 3 × a × 3 × a


John is n years old where n is an whole number. Kim is three years younger than John and Vanessa is half of Kim's age. Write an expression for Vanessa's age in terms of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning