A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.

As we know that A and B are on the axis so sub in X=0 and Y=0 into the equation to solve for the co-ordinates A and B.For A 02+y2=49y= square root of 49 = 7Do the same for B, which gives: A= (0,7) B= (7,0)To find the midpoint between A and B, we simply add the x coordinates and divide by 2 and do the same for the y coordinates.Xc = (0+7)/2Yc= (7+0)/2So C= (3.5,3.5)

OW
Answered by Oliver W. Maths tutor

3550 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3 teas and 2 coffees have a total cost of £7.80. 5 teas and 4 coffees have a total cost of £14.20. Work out the cost of one tea and the cost of one coffee.


simultaneous equations - 2x + y = 7 and 3x -y = 8


Solve this simultaneous equation: 6x+2y = 26 and 8x + 3y = 32


If L1 is y = 3x + 15 and L2 is 3y + 20 = 9x show whether or not L1 and L2 are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning