A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.

As we know that A and B are on the axis so sub in X=0 and Y=0 into the equation to solve for the co-ordinates A and B.For A 02+y2=49y= square root of 49 = 7Do the same for B, which gives: A= (0,7) B= (7,0)To find the midpoint between A and B, we simply add the x coordinates and divide by 2 and do the same for the y coordinates.Xc = (0+7)/2Yc= (7+0)/2So C= (3.5,3.5)

OW
Answered by Oliver W. Maths tutor

3360 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you calculate the area of a triangle when the question tells you the length of all three sides but no angles?


How do you solve the quadratic X^2 - 8X + 15 = 0 ?


Make 'a' the subject of the formula: p = (3a + 5) / (4 - a)


Solve 10x - 7 = 4x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning